On the Semantics of Self-Unpacking Malware Code

Saumya K. Debray Kevin P. Coogan Gregg M. Townsend
Department of Computer Science,
University of Arizona, Tucson, AZ 85721, USA.
{debray, kpcoogan, gnt}@s. arizona. edu

Abstract commonly distributed in the form of binaries, the ability
to verify that a binary file received from elsewhere does
not have any malicious content is an important com-
ponent of software security (for example, email attach-
ments are now routinely subjected to virus scans).

The rapid increase in attacks on software systems
via malware such as viruses, worms, trojans, etc., has
made it imperative to develop effective techniques for
detecting and analyzing malware binaries. Such bi- Most malware executables today are transmitted in
naries are usually transmitted in packed or encrypted “scrambled” form. There are two commonly used ap-
form, with the executable payload decrypted dynami- proaches to such code scrambliegcryptionandpack-
cally and then executed. In order to reason formally ing. The former refers to the use of some kind of in-
about their execution behavior, therefore, we need se-vertible operation, together with an encryption key, to
mantic descriptions that can capture this self-modifying conceal the executable code; the latter refers to the use
aspect of their code. However, current approaches to of compression techniques to reduce the size of the mal-
the semantics of programs usually assume that the pro-ware payload while at the same time converting it to a
gram code is immutable, which makes them inapplicable form where the executable content is hidden. In either
to self-unpacking malware code. This paper takes a stepcase, the scrambled code is “unpacked” at runtime prior
towards addressing this problem by describing a formal to execution; in many cases, there are multiple rounds of
semantics for self-modifying code. We use our seman-unpacking during the course of an executtoduch self-
tics to show how the execution of self-unpacking code unpacking malware code is, therefore, self-modifying.
can be divided naturally into a sequence of phases, and
uses this to show how the behavior of a program can be
characterized statically in terms of a program evolution
graph. We discuss several applications of our work, in-
cluding static unpacking and deobfuscation of encrypted
malware and static cross-phase code analysis.

In order to build effective defences against malware,
we have to be able to obtain a precise understand their
behavior. This makes it important to be able to reason
formally about the code and the behavior(s) of malware.
Such reasoning can be helped greatly by a formal se-
mantics that is able, among other things, to cope with
self-modifying code. Unfortunately, current approaches
to program semantics typically assume that the program
code is immutable, which makes them unsuitable for
this purpose. This poses a problem, which this paper at-
tempts to address. We motivate our approach using the

The rapid increase in the use of the Internet in many €xample application of static analysis of self-unpacking
aspects of our lives has led to an explosive growth in malware code.

the spread of malware such as computer worms, Viruses, The usual approach to dealing with packed binaries—

trojans, spyware, and bots. Software security consid- ggpecially when analyzing malware that has not been

erations have accordingly become a crucial aspect of

m.Odem software deSIQn’ develo_pme_nt, and deployment. 1For most of the paper, we will not be greatly concerned by the

Since software—both new appllcatlons tQ b.e 'nSta”ed.technicaI distinction between the operations of encrypéind packing

on a system and patches or upgrades to existing ones—igtor changing a program to its scrambled form) on the one hand

between decryption and unpacking (for the reverse op@jatio the
*This work was supported in part by the National Science Faund other. In order to simplify the presentation, therefore,wilegeneri-

tion via grant nos. CNS-0410918 and CNS-0615347, and by the A cally use the ternpackingto refer to the former andnpackingto refer

Force Office of Scientific Research via grant no. FA9550-@0319. to the latter.

1 Motivation

ot

wJ

Az
P : code snapshots
L]

A; © code change mechanisms

Figure 1. An example of a behavioral model for a self-modifying program

previously encountered—is to use dynamic analysis tions for this semantic framework, including (1) static
techniques, e.g., by running the binary in an emulator unpacking and analysis of packed malware binaries; (2)
or under the control of a debugger. However, dynamic generalizing the traditional notions of “liveness” and
analysis can be tedious and time-consuming, and can‘dead code” to self-modifying code, and applying this
be defeated via anti-monitoring and anti-virtualization to malware deobfuscation; and (3) static identification of
techniques that allow the malware to detect when its dynamic anti-monitoring defenses. Our ideas are not in-
code is being run under the control of a debugger or tended to replace the dynamic analyses currently used by
emulator [4, 6, 14, 19]. Furthermore, even if the un- security researchers, but to complement them and pro-
packer code is activated during a dynamic analysis, thevide researchers with an additional tool for understand-
code may be unpacked over many rounds of unpackinging malware.

in such a way that the amount of code that is materialized

on any given round is small enough to escape detection,

thereby leading to false negatives. 2 Behavioral Models

These shortcomings of dynamic malware analysis
lead us to revisit the question of static analysis of mal-

ware binaries. However, this faces the hurdle that since ; ; X
self-unpacking malware effectively change their code elsfor programs, i.e., static program representgtlons that
on the fly, existing semantic bases for static analysis— ¢&" be used to reason about its runtime behavior; exam-

which typically assume a fixed program—are inade- ples include graph-based representations, such as con

guate for reasoning about them. We need a semanticr®! flow graphs and program dependence graphs, com-

framework that is able to capture the dynamic genera-MONly used by compilers. Typically, such behavioral
tion and modification of a program’s code during execu- models contain program code (e.g., basic blocks) as well
tion. Furthermore, while most of the proposals for dy- 25 control or data flow relationships between them that

namic code modification in the research literature, e.g., can be used to obtain insights into the execution behav-
in the context of just-in-time compilation [1] or dynamic ior of the program.

code optimization [3, 16, 18], tend to modify code in Traditional program analyses typically assume that
principled ways, the code for dynamic malware unpack- the program does not change during the course of ex-
ing tends to be sneaky and obscure, often using arbi-ecution. This assumption generally holds for ordinary
trary arithmetic operations on memory such as addition, application code, so it suffices to use a simple behavioral
XOR, rotation, etc., to effect the code changes needed.model that contains a single “snapshot” of a program’s
This makes the development of a formal semantics for code. This assumption does not hold for malware, how-
such programs a nontrivial challenge. ever, since malware code very often changes as exe-
d. cution progresses. For example, the Rustock rootkit
and spambot arrives as a small unpacking routine to-
gether with an encrypted payload. When executed, this
code unpacks the code for a rootkit loader, which subse-
qguently carries out a second round of unpacking to gen-
erate the code for the rootkit itself [7]. This program,

Static analyses generally constribethavioral mod-

This paper makes two contributions in this regar
First, it takes a step in addressing this challenge by
proposing a formal semantics for a simple “abstract as-
sembly language” that permits dynamic code modifica-
tion. Second, it shows a number of example applica-

therefore, requires three different code snapshots to de-Syntactic Categories:

scribe its behavior. a,n &€ N (integers)
e € E (expressions)

Since our goal is to reason statically about malware I e | (instructions)
code, it becomes necessary for us to develop more gen- M € M=N-—N; (memorymap)
eral behavioral models that can cope with changes to the P e MxN (programs)
program code at runtime. Figure 1 shows an example
this. It is a directed graph where each verigxs a tra- Syntax:
ditional static program representation and whose edges e =mn (constant)
represent possible runtime changes: an efige> P; | MEM[eq] (contents of memory)
indicates that the cod® may change to the codg | e1opes (arithmetic)
at runtime. Furthermore, each edge has a labethat op € {+,—,...}
represents the mechanism for the corresponding code
change. For example, each vertex may be a control flow I = MEM[er] :=e2 (assignment)
graph for a code snapshot encountered at runtime while | input = MEM[e;] (input)
the label on each edge is a program slice that effects the | ifeigotoa (conditional branch)
corresponding code change. This allows us to reason } ﬁoltto e (unconditional branch)

a

about both the code snapshdts as they exist in be-
tween changes to the code, as well as the mechanisms
A; used to effect those changes. Sections 3 and 4 dis-
cuss a semantic formulation for machine-level programs
that forms the underpinning of such reasoning; Section
5 then discusses the details of how such a behavioral
mOdel ma.y be Constructed. memory maps: A‘nemory ma[j\/f cM=N — NJ_

and denotes the contents of a program’s memory (loca-
tions that do not have a defined value are assumed to be
implicitly mapped tol).

Figure 2. An abstract assembly language:
Syntax

3 An Abstract Assembly Language

)) An important aspect of low-level program represen-

In order to define and prove the correctness of static tations on real processors is that there is no fundamental
analyses for malware, we need to specify the languagegistinction between code and data: memory locations
semantics underlying the analysis. This turns out to contain binary values that can be interpreted either as
be problematic for malware because malware code isrepresenting data or as encoding program instructions.
typically self-modifying, while most language seman- Thjs makes it possible to operate on a memory location
tics considered in the literature assume that the programgg though it contains data, e.g., by adding or subtract-
code is immutable. We therefore begin by describing jng some value from it, and then interpret the result as

the syntax and semantics for a small, low-level abstract code and execute it. To capture this, we assume the ex-
assembly language that allows dynamic code modifica-istence of an injective functioencode : | — N such

tion. that, givenI € I, the valueencode(I) € N gives its
binary representation. We have a corresponding notion
3.1 Syntax of “decoding” a number to the instruction it repres;ents,

denoted by a functiodecode, which extendencode™
to a total function by mapping numbers that do not cor-
Figure 2 gives the syntax of our abstract assembly respond to legal instruction encodingslto
Iangyage. For th(_e_sake qf generality, we a}bs_trac_:t away decode(n) : N — I,
architecture-specific details, e.g., as the distinction be .
: ; . I if 3I € ls.t.encode(l) =n
tween registers and memory, various addressing modes, decode(n) = .
L - ; 1 otherwise
etc. We assume an infinite set of memory locations in-
dexed by the natural numbel& Operations include Syntactically, a progran? € M x N consists of a mem-
assignment, input, and conditional and unconditional ory map together with the entry point, i.e., the address
branches, the last of which include both direct and in- where execution begins. Given a progrém= (M, a),
direct branches. The set of instructions is denotetl by the memory map\/ specifies the contents of all éf's
Computations are over the set of natural numibérs memory, including both code and data.

Malware code is typically encountered in the form of To simplify the discussion, we assume that each in-
executable binaries. We model this using the notion of struction occupies a single location in memory. While

this does not hold true of variable-instruction-length ar- it would be straightforward to extend our language to
chitectures such as the Intel IA-32, the issues raised bydeal with procedure calls by addirgall and return
variable-length instructions are orthogonal to the topic instructions to the instruction set together with an
of this paper. additional stack component to each state.)

Define the predicatédhasSucc on states such that
hasSucc(¢) is true if and only if the state has a suc-
cessor, i.e., itis not undefined and not a halted state:

3.2 Semantics

The semantics of this language are given in Figure hasSucc(t) 2 t# LandVo,8:t# (O,0,0).
3. We use the following notation. The s&t denotes _ _ _
SU{L}. The Kleene closure of as6ti.e., the setofall ~ GivenaprogranP = (M, ag) and an input strea, its

finite sequences of elements §f is written S*. Given initial state is given by [P, 0] = (M, ao, #). Given this
afunctionf : A — B, f[a — b] denotes the function initial state, and the transition relatiodf : ¥ — ¥,
Az [if x = a thenb elsef(z)], which is the same ag we can now specify a trace semantics for a program as
except atz, where its value i%. follows. First, define the set of finite traces of a program

L P for an input streand to be
A storec € M is simply a memory map, and maps

locations to values. A program stdie, o, 0) has three
componentsi is the “program counter value,” which T[ro] = {tO. - t,k | to = oo[P,6] and

is either L (indicating an undefined location), 6p (in- (Vi: 0 <i < k)[hasSuce(t;) and
dicating that the program is halted), or else is an inte- tivn = S [tll}-

ger giving the location of the next instruction to exe-

cute;o € M is the store and represents the contents of The set of all finite traces of a programis then given
memory; and) € © represents the unexpended input by ¥ [P] = U TP, 0].

in the input stream. The equations defining the func- 0eo

tion &, which specifies the meaning of expressions, are
straightforward. The definition o, the semantic func-
tion describing the behavior of instructions, shows the
low-level nature of the language” takes a state as ar-

gument, uses the value of the program counter COMpo- The notion of reachability will be important in the
nenta of its argument to retrieve the contentéa) of giscussion that follows. Intuitively, a locatidh is stat-

the corresponding memory location, decodes this valuejcq|ly reachable from a locatiof, if, under the usual
using the decoding functiodecode, then executes the giatic analysis assumption that either branch of a condi-
resulting instruction. The program counter value after jona| may be taken at runtime, it is possible for control
the execution of an instruction at locatiardepends on ¢4 go from the instruction at locatiofy to the instruc-

the type of instruction: for control transfer instructions 5 at location/,. The reason we refer to it astatic

the next program counter is specified as a target of the gachapility” is that it assumes that the program code is
instruction itself; otherwise, the program counter value giatic. ie.. is not being modified during execution. We

is that of the next instruction, at location- 1. first define the notion of a control-flow successor:

Four of the five instructions in our language—
assignment, conditional branches, unconditional Definition 3.1 Let P = (0,a) be a program and =
branches, antlalt—are familiar and have the expected decode(co(¢)) the instruction inP at location/,. The
semantics, as shown in Figure 3. The fifth instruction, location/; is acontrol-flow successaf ¢, in P (written
‘input = MEM[e]’, is used to read in external input. ‘¢, ~p £;’) if one of the following hold:
The idea here is that the next value in the input stream

3.3 Reachability

is written to the memory Io_cann with address We — I ="MEM[e1] := ex andly = £y + 1;
use the notion of “external input” to refer to any source

that is external to the program: it may refer to a human — 1 = Tinput = MEM [e1]7andly = £y +1;
user, another program executing on the same computer,

input that is read in from the program’s execution — I =Tife; goto a;'andl; € {a1, 0o+ 1};

environment or over a network from a remote host, etc.

(We note in passing that the language shown does not — { ="goto e "and/(; = & [e1] 0.
have instructions for procedure calls and returns. This

omission is primarily to keep the discussion simple: 1

Value Domains:

ceM = N-—N_L (store)
fe® = N (input stream)
7w = NU{L,O} (program counter values)
¥ = wxMx0O (program states)
Semantics:

EXPRESSIONS
& ExM— N_
&n]o = n
& [MEM[e]] o letn = & [e] o in
if n £ 1 theno(n)
else L
Ietm = éa[[elﬂ o Nng = G@[[eg]] oin
if ny # L andng # 1 thenny op no
else L

& [er op ea] o

INSTRUCTIONS The semantic functions : X — 3 gives the effect of executing an instruction. It
effectively specifies the transition relation betweenestat

S ([a] ,0,0) = case decode(o(a)) of

|7MEM[€1] = eg ! o let n =4 [[elﬂ o,Ng = & [[62]] oin

if n1 # 1L andng # L then (a + 1, 0[n; — nol, 8); else L
Cinput = MEM[e;]? @ letny =& Jer] oin

if n1 # L andlength(0) > 0then (a + 1,0[n1 — hd(0)], t1(0)); elseL
Tif e; goto a1 o letny =& [ei]oin

if ny # L then

if ny # 0then (ay,0,0); else(a+ 1,0,0)

else L
Tgoto e; o letng =& Jer]oin

if ny # L then (ny,0,0); elseL
Thalt™ D (O,0,0)
1 L

Figure 3. An abstract assembly language: Semantics

The first two cases above correspond to execution fall- gram to simply modify some memory regions that typi-
through in non-control-transfer instructions, while the cally contain codé,such as thetextsection, since pro-
remaining two cases refer to the behavior of control grams sometimes contain data embedded in the instruc-
transfers. The notion of static reachability is simply the tion stream. On the other hand, we want to be able
reflexive transitive closure of the control-flow successor to catch programs that dynamically generate and exe-
relation: cute code in memory regions that usually do not contain
code, e.g., the stack or heap. We require, therefore, thata
Definition 3.2 A location ¢, is statically reachable = memory location must be modified (i.e., written to) and
from a location?, in a programP, denoted by, ~7% subsequently executed:
0y, if: (i) €op = £4; or (i) there exists a locatiofisuch

thatly ~p £ andl ~7 £4. 1 Definition 4.1 A traceT = ty...t;...t;... is code-

modifying if and only if it contains states; and¢;,

4 Giving Structure to Dynamic Code j > 1, such thatt; modifies a memory location and
Modification t; executes the instruction at locatian

A programP is code-modifying if and only if there

Before we can discuss dynamically modified code, 's some tracg’ € T [P] thatis code-modifyingd

we must SPeCify exactly V\(h&t that term means. We ~ 25ume researchers have used this criterion as a heuristierttf
interpret this narrowly. It is not enough for the pro- self-modifying code [17].

A particular execution of a program can modify its of memory locations that are modified due to the ex-
code numerous times [7]. Given an execution trice ecution of each instruction, and thereby identify those
for a programP, it is conceptually convenient to distin- states where the instruction about to be executed is at a
guish between the code that is changing memory loca-location that was modified in the current phase. Each
tions that may be executed at some future point from the such state then marks the beginning of a new phase.
code that is encountered when one of those modified lo-More formally, the process of partitioning a trace into
cations is eventually executed. We do this by dividing phases can be described as follows. For any instruction
up an execution trace infthases 1, letmoD [I] o denote the set of locations modified by

1 given a storer:
Definition 4.2 A phaseT” of a traceT is a maximal

subsequence &F such thafl” does not execute any lo- {ni} if I ="MEM[e1] := ey
cation modified byr”. 1 andn; = & [e1] o
This means that all phases but the first always begin with MOD [I]o = ¢ {n:1} if I = Tinput = MEM[e1]”
the execution of an instruction that was created and/or andn;, = & [ei] o
modified in a previous phase.

0 otherwise

The following result captures a crucial property of
phases: namely, that for each statein the phase, _the Givenatracd = tot1 . ..t,, lett; = (a;, 01, 0;), let the
contents of memory at the program counter location j,<trction at locatiom;, which is about to be executed,
for that state is the same as the contents of locatjat bel; = decode(o(a;)). We first define functionsh~
1 T (3 .

the beginning of that phase. and A+ that give the set of memory side effects of the

_ current phaseA~ () gives the set of locations written
Theorem 4.1 Let¢ = So,...,5i,... be a phase, with 5 ypto state, i.e., at the point where the instructidn
Si = (ai, My, 0;), thenM;(a;) = Mo(a;) forall S; € gpecified byt’s program counter is about to be executed,
¢. while A*(¢) gives this set aftef has executed. For any
statet = (a, 0, 0), let I = decode(o(a)) be the instruc-

Proof By contradiction. Suppose that the proposition tion executed irt, then the value oA+ (¢) is defined as
does not hold, i.e.M;(a;) # Moy(a;) for some state fgllows:

Si € ¢. Then it must be the case that memory location
a; is modified by some earlier stal;, € ¢, j < 1. A*(#)
Thus, S; € ¢ executes a location modified I8 € ¢.
From the definition of a phase, this means tRaand
S; cannot be in the same phase. Thus, eitfieg ¢ or
S; & ¢, which is a contradiction. The theorem follows.

=A"(t)umoDp [I] o

The functionA~ is defined as follows. For the very
first statety of the trace, no code has been executed
and therefore no memory modifications have occurred.
For a later state;;,, the value ofA~(¢,11) depends
This theorem implies that for each statein aphase, on whethert;,; is the first state in a new phase. If the

the instruction “seen” at location; by S;, when control program countet, ,; in this state is an address that has
reaches;, is the same as the instruction at that location peen modified imM*(t;), thent, | starts a new phase,

at the beginning of the phase: and since no instructions in this new phase have been
executed, the memory effects of the phase are empty.
Corollary 4.2 Let¢ = Sp,...,S;,... be aphasefora Otherwise,t;,; simply extends the current phase, so

program, withsS; = (a;, M;,6;). Then for allS; € ¢, A~ (tiy1) = At (t;). Thus, we have:
the instruction at locatiom; that is executed in stat€;

is the same as the instruction occurring at locatigrin A(ty) = 0
the initial stateS, of ¢. 0 if a1 € AT(E)
1 1
- - . . AT (i) =
This corollary means that the static code “snapshot A*(t;)) otherwise

at the beginning of a phase gives the program that is ex-
ecuted by that phase, and can be used as a basis for an

lyzing and understanding the behavior of that phase. We can now specify how to partition a trageinto a

sequence of phases. Given a stateT’, let¢(t) € N be

We next consider the question of partitioning a trace its phase numbemhich denotes which phase it belongs
into phases. Intuitively, given a trace of a program’s ex- to. We can use thA™ function to assign phase numbers
ecution, we can simply replay the trace keeping track to states:

H(to) =0 5 Program Evolution Graphs

T o) otherwise _ o o
This section discusses one concrete application of the

) . semantics described in the previous section. We show
Then, each phasg is a maximal subsequencebsuch how this semantics can be used as a formal basis for
that all of the states in; have the same phase number. constructing static behavioral models for self-modifying

Recall that, as mentioned in Section 2, one of our Programs, which can then be used to reason about the
goals is to construct static behavioral models for pro- behavior of such programs.

grams with dynamically modified code, which capture The dynamic evolution graph for a prografy dis-
both “code snapshots” as well as code change mechagyssed in the previous section, is an abstraction of its
nisms, i.e., the code that is responsible for dynamically {race semantics that describes some asped®sofun-
modifying the code. In preparation for this, we first out- time pehavior. Theprogram evolution graplior P is

line how we can abstract away from the trace seman-4 static approximation t&’s dynamic evolution graph.

tics of a program to a description that records only the Thjs section discusses the construction of such graphs.
possible code snapshots and code change mechanisms

that occur over all possible executions of the program. ~ Given an executablé’, we initialize the program

First, given a phase = to, ..., %, in a traceT, where ~ €volution graph of-to containP as its only vertex, then
t: = (as,04,0;),0 < i < n, we specify two characteris- Proceed by iteratively analyzing the vertices. For each
tics of ¢: o vertex, our algorithm identifiesransition edgesthat

specify control transfers into newly modified code (Sec-
tion 5.1), then processes each transition edge separately
— The code snapshot for the phase, denoted by, gpain (an approximation to) the code that would re-
code(¢). From Theorem 4.1, this is given by the - gt from dynamic code modifications leading up to that
program at the first state of the phase: instruction (“static unpacking,” Section 5.2). The input
executableP has to contain the code for the initial un-
code(¢) = (00, ao). packer (which unpacker cannotitself be in packed form),
) as well as a control flow path to this code so that it can
— The code responsible for changes to memory thate executed: our algorithm begins by discovering tran-
occur during the execution of, denoted by jtion edges out of this initial unpacker, then iteratively
dmods(¢). Since the set of memory locationsmod- 55cesses the unpacked programs it identifies. The re-
ified during the execution af is given byA™ (¢,,), sulting programs from static unpacking are then added
this is given by the dynamic slice abde(¢) for to the program evolution graph and eventually processed
the set of locations (i.e., variabled)" () and the i their turn. The discussion below focuses on the core
history ¢. computations of of this nested iteration, namely, identi-
fication of transition points and the static unpacking for
We can now define thdynamic evolution graplor a any given transition point. The overall algorithm is sum-
programP to be an edge-labelled directed graph with marized in Figure 4.
verticesV and edged’, given by the following:

5.1 Identifying Transition Edges
— LetT € T[P] be any execution trace fdp, and

let ¢ be any phase df’. Thencode(¢) is a vertex , . . s
in V. The first step of the analysis involves identifying

those instructions (equivalently, locations) in a program
that may mark a boundary between phases, i.e., from
which control may reach a location that has been modi-
fied by the current phase. We refer to such control flow
as atransition edge For determining the locations that
may be modified during execution, we assume a binary-
level alias analysis that gives a superset of the set of pos-
sible referents of all (direct and indirect) memory refer-
The next section discusses how we can statically approx-ences. The issue of alias analysis—and, in particular,
imate a program’s dynamic evolution graph to construct binary-level alias analysis [12, 13]—is well-studied and
a behavioral model which we call its “program evolution in any case orthogonal to the topic of this paper, and
graph.” we do not pursue the mechanics of such analyses further

— LetT € T [P] be any execution trace faP; ¢,
and¢; 1 be any two successive phasesigfand
D = dmods(¢;). Letv; andv;;1 be vertices i/
corresponding to phases and ¢, 1 respectively.

D . .
Thenv; — v; 41 is an edge in&.

Input: A programPy = (Mo, ag).
Output: A program evolution graply = (V, E).

Method:
V ={Py}; [* Pyisunmarked*/
E =10

while there are unmarked elementsiotdo
let P = (o, a) be any unmarked element &f,
mark P;
T = TransitionEdges(P);
for eacht = (b,¢) € T'do
M := Modsp(a,b);

/* see Section 5.1 */
[* static unpacking: see Section 5.2 */
/* locations modified on paths fromto b

S := backward static slice aP atb with respect ta\/;
o' .= store resulting from the symbolic execution$if

Pri=(d',c);
if P’ ¢ V then

addP’ (unmarked) td/; add ‘P 5, PtoE;

fi
od /*for*/
od /*while*/
return G,

/* unpacked program */

Figure 4. Algorithm for static construction of program evolution graphs

here. We use the results of the alias analysis to identify 1. a ¢ write(X) for any instructionX € P; and

transition edges.

More formally, given a locatiod and an instruction
I, let alias;(¢) denote (a superset of) the set of values
of memory locatiory when control reaches over all
possible executions of the programVe generalize this
to val;(e), denoting the set of possible values taken on
by any expressioa when control reaches, by lifting
pointwise: the details are given in Figure 5. Then, for
each instructiol we compute two setswrite(I), the
set of memory locations that may be written to by
and next(I), the set of locations that control may go
to after the execution of. The details of how these
functions are defined are given in Figure 5. Note that
next(I) is in fact simply a static approximation to the
semantic relation- p defined in Section 3.3. Transition
edges are then obtained as follows:

Definition 5.1 A transition edge for a program® is a
pair of locationga, b) such that the following hold:

3In the context of more familiar source-level analyses, fguialias
analyses compute, for each pointer, the set of objects itpoay to.
Atthe assembly-code or machine-code level, this is ecgritab com-
puting, for each location that may be used as a pointer, traf pessi-
ble addresses—i.e., the values—contained at that locdtiaur case,
therefore, alias analysis amounts to computing the pessilles at
each location in memory.

2. let the instruction at location be I,, then there
exists an instruction/ in the program, at loca-
tion 7, such that: is reachable fronf; andb €
write(J) N next(1,).

The definition states that while locatienis not mod-
ified by the program (condition 1), locatidnmay be
modified by.J and control can then go fromito ¢ and
thence tob (condition 2). Control enters the modified
code when it goes froma to b.

In general, a program may have multiple transition
edges, corresponding to different ways of modifying
a program. Given a progran®?, we denote its set
of transition edges—which will, in general, be depen-
dent on the precision of the alias analysis used—by
TransitionEdges(P).

5.2 Static Unpacking

Once we have the set of transition edges for a pro-
gram P, we process them individually to determine, as
far as possible, the contents of memory after unpacking.

Given: an instruction/ at location/;.

valy(e) denotes the set of possible values of an expressiehen control reachekfor all possible execu-

tions of the program:

{n}
U{alias;(e') | € € vals(er)}

valy(e)

{e} op ey | € € wvalr(er) andely, € valr(ez)}

if e="n"
if e ="MEM[eq]”

if e="ey op ey’

write(I) denotes the set of locations that may be modified byer all possible executions of the program:

valy(e1) if I ="MEM[eq] := ey
write(I) = ¢ walr(e;) if I ="input = MEM[eq]”
0 otherwise

next(I) denotes the set of locations that control may go to immelgiaféer the execution of:

{tr+1} if I ="MEMeq]:=es”

{r +1} if I ="input = MEM[e;]”
next(I) =< {a,l;+1} if I =Tife; gotoa”

valy(e) if I ="goto e

0 if 7 ="halt”

Figure 5. The functions val, write, and next(see Section 5.1)

We refer to this process as static unpacking. Of course,to ¢ (recall that(b, c) is the transition edge under consid-

given the usual undecidability problems that arise dur-
ing static analysis, this will not always be possible in

eration). The details of exactly how the symbolic execu-
tion are carried out involve design and representation de-

general, and our analysis will sometimes conservatively cisions concerning, for example, tradeoffs between cost
indicate the contents of some memory locations to be and precision. For this reason, we do not pursue these

unknown.

Given a transition edgé¢b,c) in a programpP =
(0, a), we first compute the set of locatioods p (a, b)
that may be modified during the execution Bfalong
paths froma to b:

Modsp(a,b) = U {write(I) | a ~% I andl ~7} b}.
Iep

Our next step is to isolate the fragment d?
whose execution may affect the values of locations in
Modsp(a,b). For this, we compute, the backward
static slice of P for the set of locations (i.e., vari-
ables) Modsp(a,b). The store resulting from these
modifications—which includes the modified code—is
then obtained by symbolic execution &f

This symbolic execution of the slicg begins in the
memory state given by the initial storer and proceeds
until it reaches the point where control would go frém

details here.
5.3 Putting it all Together

After static unpacking of each transition edge, we
update the program evolution graph. Given a program
P = (0,a) and a transition edg@, ¢), let the memory
state resulting from static unpacking bg then the re-
sult of static unpacking is the prograRi = (¢, ¢). If
P’ is new, we add it to the set of vertices of the program
evolution graph and the edg® ‘5, P’ to the set of its
edges.

Since one of the main reasons for constructing a pro-
gram evolution graph is for the analysis and understand-
ing of malware code, we may also want to disassemble
the program at each of its vertices and construct a con-
trol flow graph for it. Given a verteX’ = (o,a), the
locations to be disassembled are giver{By a ~% ¢}.

The control flow graph for the resulting instruction se- Phases memory regions
guence can be constructed in the usual way.

€)
/1
|
I
|l
b
>]

6 Applications of Program Evolution Yo
Graphs S
This section sketches some applications of static \\‘.__ \\
analysis of program evolution graphs for understanding TN ‘
the behavior of malware binaries. ' —— control flow
- —= unpack
6.1 Exec-Liveness and Malware Deob- « execute

fuscation

The discussion of static unpacking in Section 5.2 is
quite liberal in the set of memory modifications it con-
siders: given a prograi = (o, a) and a transition edge
(b, c), all memory m9d|f|cat|ons poss!ble along all paths The boundary conditions for these equations are given
from a to b are considered as potentially part of the un-

. . . by vertices that have no successors:xhiee,,,; sets for
packed code. This may seem overly conservative, since . : ;)
L . : . such vertices i¥. These equations can be solved itera-
it is entirely possible that some of these writes to mem-

D tively to obtain, for any vertex in the program evolution
ory are modifying data rather than code, or may even be ; :
e : graph, the set of locations that may be executed in a later

junk” writes intended to obfuscate. We include them all phase

when computing the backward static slice used for static '

unpacking, nevertheless, since we do not know, ahead Thisinformation can then be used to simplify the pro-
of time, which locations may be executed at some future gram evolution graph. The essential idea is that a mem-
point in the computation. ory location/ is relevantat a program poinp if it is

live or exec-live ap, or if there is a path from through

the program evolution graph along which the value of
location ¢ may be used before it is redefined; once a
program evolution graph has been constructed, the com-
putation of relevant locations is a straightforward appli-
cation of dataflow analysis techniques [2]. Once such
relevant locations have been identified in this way, as-
signments to irrelevant locations can be eliminated. The
notion of relevance generalizes the traditional compiler
notion of liveness, and irrelevant-code elimination gen-
eralizes a common compiler optimization known as dead
code elimination. The difference here is that, instead
of improving performance, the intent of irrelevant-code
elimination is to remove useless instructions inserted for
— exec(v) = {£ | a~* £}. This gives the set of code obfuscation purposes and make the program easier to

addresss that are statically reachable from the entryunderstand and analyse (Christodorestal. refer to
pointa of the program. such assignmens as “semantic no-ops” [9]).

Figure 6. Way-Ahead-of-Time Unpacking

Once we have the entire program evolution graph, we
can use static analysis to identify, at each vertex, lo-
cations that may be executed, without first being mod-
ified, along some path from that vertex through the pro-
gram evolution graph. The idea is very similar to that
of liveness analysis, and we refer to it@sec-liveness
We compute exec-liveness as follows. Given a vertex
v = (o, a) in a program evolution graph, define the fol-
lowing sets fomw:

— write(v) = J{write(I) | I is an instruction irv}.
This gives the set of locations that may be modified
by the execution of.

Let xLive,, (v) andxLive,,:(v) denote, respectively, the 6.2 “Way Ahead of Time” Unpacking
sets of exec-live locations at entry to, and exit from, ver-

texv. These can be defined by the following dataflow

equations: One intuitively expects a program to unpack some
code, then execute the unpacked code, perhaps unpack

(xLive,yt(v) — write(v)) U ezec(v) ~ some more code and execute it, and so on—i.e., have

U {xLive;,(v") | " a successor af} each phase unpack only the code needed for the next

xLive;, (v)
xLive oyt (v)

10

phase. While intuitively straightforward, such a scheme the value of some input. Examples of such behavior in-
is not general enough to capture all possible unpackingclude the use of anti-monitoring and anti-virtualization
behaviors. In particular, it is possible for a phase to un- defenses [4, 6, 14, 19], where the malware does not re-
pack code thatis not used until a phase later than the nexteal itself if it determines that its execution is being
one. This is illustrated by Figure 6, where dashed lines watched; “time bombs” and “logic bombs,” where the
indicate which memory regions are unpacked by a phaseactivation occurs only on specific dates (time bombs)
while dotted lines show the memory regions a phase ex-or due to some specific environmental trigger (logic

ecutes. Phasé, unpacks three memory regiond; B, bombs); and bots that activate specific components of
andC. The next phasep;, executes only one of these their payload only when they receive the appropriate
(region A), and unpacks a fourth regio®). The fol- command from a botmaster [10]. We can use static anal-

lowing phaseg,, executes regionB (unpacked byp) ysis to identify such situations:
and D (unpacked byp;), and unpacks regiof’. Fi-

nally, phaseps executes regioti’ (unpacked byb,) and Proposition 6.1 Given a programP containing some
£ (unpacked by,). In this example, phasg unpacks gynamic unpacking code and a conditional brancts,
certain regions of memory that are executed, not by the e dynamic unpacker cod@is conditionally activated

next phaseb;, but rather by subsequent phas¢s énd by B if the following hold:
¢3). We refer to this kind of unpacking as “way-ahead-

of-time (WAT) unpacking.” 1. the test expressianis computed from a value read

WAT-unpacking can be problematic for dynamic mal- in by an input instruction = ‘input = MEM|e]’;
ware analysis tools since it effectively requires that the . .
tools maintain a complete history of a program’s un- 2. tong.of tr:je targets of the branch instructiBrieads
packing behavior, which can be expensive due to the ad- ot an

ditional memory requirements. In practice, such tools 3. the other target of3 does not lead ta@” without

sometimes make the simplifying assumption that each first going through the input instructioh
phase only unpacks code that is used by the next phase,

i.e., that WAT-unpacking does not take place. This can

. : The reason for the third condition is that some mal-
compromise soundness by causing some unpacked cod\(,avare such as a bot. mav simplv sit in a loob. repeated|
to fail to be detected, as in the case of the Renovo dy- ’ » may Py b, Tep y

namic analysis tool [15]. On the other hand, if a static reading in commands and checking to see if any of them

analysis can guarantee the absence of WAT-unpackingd'reCt itto activate the unpacker code.

in a malware executable, subsequent dynamic analyses The detection of dynamic defenses in this manner can
of that executable can safely ignore its unpacking his- give security researchers information about the location
tory, thereby improving efficiency significantly without and nature of conditionally activated unpackers, thereby
losing soundness. allowing them to take countermeasures if they choose to

WAT-unpacking can be detected by static analysis of use dynamic analysis.

program evolution graphs via a straightforward adapta-
tion of the notion of def-use chains [2]. Using tbrec 6.4 Cross-Phase Code Analysis
and write sets for the vertices of a program evolution

graph, we can construct “def-exec chains,” which are
exactly analogous to the traditional static analysis no-

tion of def-use chains and links each modification of a (=" "= ™Y - |
location (obtainable from therite set of each vertex) incriminating patterns, actions or behaviors. Most mod-

to all of its “uses” (obtainable from thexecset of each €N anti-virus products use “generic decryptors” to deal

vertex). Itis then straightforward to determine whether a With polymorphic viruses. The idea here is to emulate
location modified by one phase (vertex)in a program the malware code for some amount of time, with the

evolution graph is used by some other phase (vertex) expectation that this will allow enough of the malware
whereu, is not an immediate successongt payload to become unpacked that it can be detected sim-

ply by scanning the contents of memory for telltale byte
sequences [20]. Christodoresetial. propose a more
6.3 Conditionally Activated Unpacking general scheme that uses instruction sequence templates
to specify certain kinds of malicious behavior [8]. A sig-
nificant drawback with a great deal of such work is that
There are situations where either the unpacker or thethey assume that “enough” of the code of the candidate
unpacked code may be activated conditionally based onbinary will be available at one time for analysis. This

A number of researchers have described techniques
for identifying malware based on examining its code for

11

assumption can make it possible for a malware instanceused as input to the techniques described by Dalla Preda
to evade dynamic security analysis tools by taking its etal.

actions and distributing them across multiple unpacking
phases, so that no single phase exposes very much of thg
malware code.

Christodoresclet al. have proposed incorporating
ome knowledge of instruction semantics into virus
scanners to get around simple code obfuscations used

These problems can be mitigated by static analysis of by malware [8]. The semantic information they propose
malware code where the entire program evolution graphto use is much simpler than that presented here, and is
is available for analysis. As a simple example, the mal- based on a notion of “templates,” which are instruction
ware detection approach of Christodorestal. [8] can sequences with place-holders for registers and constants.
be extended to deal with multiple unpacking phases asThey do not consider the semantic issues raised by code
follows: self-modification, but assume that the malware has been
unpacked and is available for analysis. This work is
similarly orthogonal to that described here, and (as dis-
cussed in Section 6.4) could be generalized using our
behavioral models.

Given an executable programwith program
evolution graphG = (V, E), a malware tem-
plate - matchesP if either of the following

hold: There is a large body of literature on malware detec-
_ tion and analysis; Szor gives a comprehensive summary
1. there is some vertex € V' such thatr [20]. These approaches typically use dynamic analysis,
matches); or e.g., via generic decryptors, to deal with runtime code
2. there exists a pathy, ..., v, in G such modification.

that = matches the result of concatenat-
ing the code sequences far, . . . , v,,.

7 Related Work 8 Conclusions

The only other work we are aware of that gives a for-

mal semantics for self-modifying code is a recent paper The rapid growth in the incidence of malware has
by Caiet al. [5]. Their goals, namely, verification of made their detection and analysis of fundamental im-
code that is self-modifying but not in a “bad” way, are portance in computer system security. Most malware
very different from ours, namely, static analysis of pro- instances encountered today use packed (i.e., encrypted
grams that may be malicious. The two approaches alsoor compressed) payloads in an attempt to avoid detec-
differ considerably in their technical details: Gatial. tion, unpacking the payloads at runtime via dynamic
describe an approach based on Hoare logic that they useode modification. Modern malware detectors use dy-
to reason about self-modifying code, while our approach namic analysis to get around this, but this approach has
is based on a trace semantics. the drawback that it may not be able to detect condition-
Dalla Predaet al. have discussed the use of abstract ally unpacked code, e.g., due to anti-debugging d‘?fe”s?s
. . . in the malware or because the malware payload is acti-
interpretation, based on a low-level trace semantics, to o . i

) vated only on a specific date or time or in response to
reason about low-level code obfuscations used by maI-Some specific command
ware [11]. They do not focus on dynamic code modifi- '
cations, but assume instead that the program has been This paper describes an approach that complements
unpacked and correctly disassembled and is availablesuch dynamic techniques via static analysis of malware
for analysis; their goal is to use abstract interpretation code. We present a formal semantics that can cope with
to hide the effects of code obfuscations used by mal- self-modifying code, then use this to develop the notion
ware, and to use such abstract interpretations to reasomnf a phase-based concrete semantics that describes how
about the soundness and completeness of malware dea program’s code evolves due to dynamic code modifi-
tectors. By contrast, we focus on the actual semantics ofcations. We then discuss how this concrete semantics
self-modifying code; our goal is to use this semantics as can be statically approximated. Our ideas can be used to
a basis for constructing behavioral models for, and rea- understand some aspects of the behavior of dynamically
soning about, self-modifying programs. The two works modified code, e.g., the use of anti-monitoring defenses,
are orthogonal in the sense that the behavioral modelsand also to statically approximate the code that is un-
constructed using the approach described here could bepacked at runtime.

12

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

A.-R. Adl-Tabatabai, Michat Cierniak, Guei-Yuan
Lueh, Vishesh M. Parikh, and James M. Stichnoth.
Fast, effective code generation in a just-in-time
Java compiler. IrProceedings of the ACM SIG-
PLAN '98 Conference on Programming Language
Design and Implementatippages 280-290, June
1998.

A. V. Aho, R. Sethi, and J. D. Uliman.Compil-
ers — Principles, Techniques, and Taokddison-
Wesley, Reading, Mass., 1985.

V. Bala, E. Duesterwald, and S. Banerjia. Dy-
namo: A transparent dynamic optimization sys-
tem. InSIGPLAN '00 Conference on Program-
ming Language Design and Implementatipages
1-12, June 2000.

Black Fenix. Black Fenix’s anti-debugging tricks.

[12]

[13]

[14]

[11] M. Dalla Preda, M. Christodorescu, S. Jha, and

S. Debray. A semantics-based approach to mal-
ware detection.ACM Transactions on Program-
ming Languages and Systen2008. To appeatr.
(Preliminary version appeared Proc. 34th An-
nual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL'Q7)
Jan. 2007).

S. K. Debray, R. Muth, and M. Weippert. Alias
analysis of executable code. Rroc. 25th ACM
Symposium on Principles of Programming Lan-
guages (POPL-98pages 12—24, January 1998.

M. Fernandez and R. Espasa. Speculative alias
analysis for executable code. Rroc. 11th Inter-
national Conference on Parallel Architectures and
Compilation Techniques (PACTpages 222-231,
September 2002.

Lord Julus. Anti-debugging in win32, 1999. VX
Heavens.
http://vx. netl ux.O{TP/I i b/vljO5. htm .

http://in.fortunecity.con skyscraper/browser/ 12/ sicedete. ht
[15] M. G. Kang, P. Poosankam, and H. Yin. Renovo:

H. Cai, Z. Shao, and A. Vaynberg. Certified self-
modifying code. InProc. 2007 ACM SIGPLAN
conference on Programming language design and
implementation (PLDI '07) pages 66—77, June

2007. [16

S. Cesare. Linux anti-debugging techniques (fool-
ing the debugger), January 1999. VX Heavens.
http://vx.netlux.org/lib/vscO4. htm .

K. Chiang and L. Lloyd. A case study of the Ru-
stock rootkit and spam bot. IRroc. HotBots '07:
First Workshop on Hot Topics in Understanding
Botnets Usenix, April 2007.

M. Christodorescu, S. Jha, S. A. Seshia, D. Song,
and R. E. Bryant. Semantics-aware malware detec-
tion. In Proc. Usenix Security '05August 2005.

To appear.

[19]

Mihai Christodorescu, Johannes Kinder, Somesh
Jha, Stefan Katzenbeisser, and Helmut Veith. Mal-
ware normalization. Technical Report 1539, Uni-
versity of Wisconsin, Madison, Wisconsin, USA,
November 2005.

E. Cooke, F. Jahanian, and Danny McPherson.
The zombie roundup: Understanding, detecting,
and disrupting botnets. IProc. Workshop on
Steps to Reducing Unwanted Traffic on the Inter-
net (SRUTI'05)July 2005.

13

[17]

[18]

A hidden code extractor for packed executables. In
Proc. Fifth ACM Workshop on Recurring Malcode
(WORM 2007)November 2007.

M. Leone and P. Lee. A declarative approach to
run-time code generation. IRroc. Workshop on
Compiler Support for System Software (WCSSS)
February 1996.

J. Maebe and K. De Bosschere. Instrumenting self-
modifying code. IrProc. Fifth International Work-
shop on Automated Debugging (AADEBUG2Q03)
pages 103-113, September 2003.

F. Noél, L. Hornof, C. Consel, and J. L. Lawall.
Automatic, template-based run-time specializa-
tion: Implementation and experimental study. In
Proc. 1998 International Conference on Computer
Languagespages 132-142, 1998.

J. Rutkowska. Red pill... or how to de-
tect VMM using (almost) one cpu instruction.
http://invisiblethings.org/papers/redpill.html.

[20] P. Szor. The Art of Computer Virus Research and

Defense Symantek Press, February 2005.

